Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 7(3): 366-76, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27239414

RESUMO

BACKGROUND: Muscle wasting during cancer cachexia contributes to patient morbidity. Cachexia-induced muscle damage may be understood by comparing its symptoms with those of other skeletal muscle diseases, but currently available data are limited. METHODS: We modelled cancer cachexia in mice bearing Lewis lung carcinoma/colon adenocarcinoma and compared the associated muscle damage with that in a murine muscular dystrophy model (mdx mice). We measured biochemical and immunochemical parameters: amounts/localization of cytoskeletal proteins and/or Ca(2+) signalling proteins related to muscle function and abnormality. We analysed intracellular Ca(2+) mobilization and compared results between the two models. Involvement of Ca(2+)-permeable channel transient receptor potential vanilloid 2 (TRPV2) was examined by inoculating Lewis lung carcinoma cells into transgenic mice expressing dominant-negative TRPV2. RESULTS: Tumourigenesis caused loss of body and skeletal muscle weight and reduced muscle force and locomotor activity. Similar to mdx mice, cachexia muscles exhibited myolysis, reduced sarcolemmal sialic acid content, and enhanced lysosomal exocytosis and sarcolemmal localization of phosphorylated Ca(2+)/CaMKII. Abnormal autophagy and degradation of dystrophin also occurred. Unlike mdx muscles, cachexia muscles did not exhibit regeneration markers (centrally nucleated fibres), and levels of autophagic proteolytic pathway markers increased. While a slight accumulation of TRPV2 was observed in cachexia muscles, Ca(2+) influx via TRPV2 was not elevated in cachexia-associated myotubes, and the course of cachexia pathology was not ameliorated by dominant-negative inhibition of TRPV2. CONCLUSIONS: Thus, cancer cachexia may induce muscle damage through TRPV2-independent mechanisms distinct from those in muscular dystrophy; this may help treat patients with tumour-induced muscle wasting.

2.
Cardiovasc Res ; 99(4): 760-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23786999

RESUMO

AIMS: Dilated cardiomyopathy (DCM) is a severe disorder defined by ventricular dilation and contractile dysfunction. Abnormal Ca(2+) handling is hypothesized to play a critical pathological role in DCM progression. The transient receptor potential vanilloid 2 (TRPV2) has been previously suggested as a candidate pathway for enhanced Ca(2+) entry. Here, we examined the sarcolemmal accumulation of TRPV2 in various heart-failure model animals and DCM patients, and assessed whether presently available inhibitory tools against TRPV2 ameliorate DCM symptoms. METHODS AND RESULTS: Immunological and cell physiological analyses revealed that TRPV2 is highly concentrated and activated in the ventricular sarcolemma of DCM patients and three animal models-δ-sarcoglycan-deficient hamsters (J2N-k), transgenic mice over-expressing sialytransferase (4C30), and doxorubicin (DOX)-induced DCM mice. Over-expression of the amino-terminal (NT) domain of TRPV2 could block the plasma membrane accumulation and influx of Ca(2+) via TRPV2. Transgenic (Tg) or adenoviral expression of the NT domain in DCM animals caused effective removal of sarcolemmal TRPV2 along with reduction in the phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and reactive oxygen species (ROS) production, which were activated in DCM; further, it prevented ventricular dilation and fibrosis, ameliorated contractile dysfunction in DCM, and improved survival of the affected animals. The TRPV2 inhibitor tranilast markedly suppressed DCM progression. CONCLUSION: Sarcolemmal TRPV2 accumulation appears to have considerable pathological impact on DCM progression, and blockade of this channel may be a promising therapeutic strategy for treating advanced heart failure.


Assuntos
Canais de Cálcio/fisiologia , Cardiomiopatia Dilatada/etiologia , Sarcolema/metabolismo , Canais de Cátion TRPV/fisiologia , Animais , Compostos de Boro/farmacologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/prevenção & controle , Cricetinae , Progressão da Doença , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , ortoaminobenzoatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...